
hr. .I. Hear Mms Transfer. Vol. 31, No. 11, pp. 2193-2195, 1988 0017-9310/88$3.00+0.00 
Printed in Great Britain Pergamon Press plc 

Analogy between fluid friction and heat transfer 
in annulit 

TOKURO MIZUS~INA 

Department of Chemical Engineering, Kyoto University, Kyoto, Japan 

Abstract-A semi-theoretical equation for the heat transfer coethcient on the inner wall in turbulent 
annular flow is obtained from the analogy between fluid friction and heat transfer. Comparison of the 
equation with experimental data of air flow obtained by the author shows good agreement. It is also in 

close agreement with the equation proposed by Monrad and Pelton at a higher Prandtl number. 

INTRODUCTION 

Tmn are many experimental or recommended equa- 
tions for heat transfer to annuli. But the values of heat 
transfer coefficients given by these equations differ 
considerably, and all of them are higher than the 
author’s experimental values for air. 

The author extended the concept of the analogy 
between heat transfer and fluid friction to apply it to 
this case and obtained a semj-theoretical equation, 
which could correlate the data for air, and was also 
in close agreement with Monrad and Pelton’s equa- 
tion [l] if applied for liquid. 

VELOCITY DISTRIBUTION AND FLUID 

FRICTION 

The velocity distribution and fluid friction in annuli 
were well discussed by Rothfus et al. [2]. They con- 
cluded that the radius of maximum velocity in fully 
developed turbulent flow was the same as predicted 
by Lamb’s equation [3] for entirely viscous flow 

r, = {(r:-ri;)/21n(r,/r,)}“2. (I) 

Furthermore, according to them 

p, seems to be more reasonable than p. 
Between the skin frictions on outer and inner tube 

walls there exists the following relation : 

zgo/(r;-r;) = Z,rl/(r:-r;). (3) 

When f 0 is defined as based on the overall average 
velocity F, and Re as d, f7p/g 

t This paper was presented at the 1st International Heat 
Transfer Conference held in London, 1951, and published in 
the Proeeed&rs of the General Discussion on Heat Transfer. 
It is here reproduced by permission of the Council of the 
Institution of Mechanical Engineers. 

f. = RI Re- ‘I4 

Furthermore, Rothfus et al. discussed the velocity 
distribution in the annuli in detail. The author, 
however, assumes Kevin-~andtSs seventh root 
law for brevity, and the ratios of V,, 8,, and 5, to B 
can then be calculated as follows : 

V,,, 60 rl+rO --.-.=- 

fi 7 7r,+7ro+rm (5) 

PI @I +rdVr, +8r,) 
7 = (rt +r,)(7r, +7r,+r,) 

PC3 (ri +r~)(7~~+8r~) -=_ = -. 
V (r0+rm)(7r,+7r,+rm)* 

(6) 

(7) 

HEAT TRANSFER COEFFICIENTS TO ANNULI 

Firstly, the following case is considered when the 
radii of maximum temperature and maximum velocity 
are equal. The heat is transferred from the region 
inside r,,, to the inner tube wall, and from outside r, 
to the outer tube, the transfers being independent of 
each other. Then, the relation between skin friction 
on the inner tube wall and heat transferred to the 
inner tube wall is 

(&--&&JO = @/4(~lJro). (8) 

In the turbulent core, the Reynolds analogy is applied 
and the following relation is obtained : 

@o-GJ/9* = FL?,- Ed/&&). (9) 

Secondly, the following case is to be considered. 
The outer tube wall is insulated, and the heat is trans- 
ferred to the inner tube wall from all parts of the 
annulus. The resistance of the laminar layer to heat 
transfer is exactly the same as in the former case, 
therefore a similar equation to equation (8) is ob- 
tained 
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NOMENCLATURE 

CP specific heat of fluid at constant pressure Greek symbols 

F 
equivalent diameter, 2(r, - ro) x eddy diffusivity of heat 
Fanning-type friction factor AJ temperature change along the axial 

h heat transfer coefficient direction 

k thermal conductivity of fluid L1 absolute fluid viscosity 
K,, K,, K3 constant depending on r,,/r, only P fluid density 

Nu Nusselt number, hd,,/k T skin friction. 

Pr Prandtl number 

4 heat transferred to wall Subscripts 
Re Reynolds number, deq vp/p 0 inner tube wall or region inside radius of 
r radial distance from the center to a point maximum velocity 

in the fluid stream 1 outer tube wall or region outside radius of 
t local fluid temperature maximum velocity 
t average fluid temperature b boundary between laminar layer and 
V local fluid velocity turbulent core 
B average fluid velocity. m maximum velocity. 

(lb--to)/4 = WWVblTo). (10) (i-&)/q = NV,- f’bMc,,~oh (14) 

The resistance in the turbulent core, however, is not Combining equations (10) and (14) 

the same. On the following assumptions the ratio of 

the resistances of the two cases can be calculated : that 
the velocity in the turbulent core has the uniform 
value 9; that the temperature change along the axial 
direction, A,t, is equal over the entire annulus ; and 
that in the turbulent core, the eddy diffusivity of heat 

tl is constant across the annulus. In the first case, heat 
passing through the section r is expressed as 

a(dt/dr)2xr = n(rz -r2) vpc,,A,t. (11) 

When this is solved the average temperature difference 
can be calculated. On the other hand, q,, is expressed 
as n(ri - ri) rpc,A, t and hence, the thermal resistance 

in the turbulent core is 

X (12) 

In the second case, a similar result is obtained and 

therefore the ratio of the resistances of the two cases 
is 

N= 

According to Prandtl [4], and by application of the 
same correction as introduced by the author (51 into 
Prandtl’s equation of the analogy, the following 

relations are obtained : 

1,s 

(16) 

Furthermore, rb/r, can be calculated from the fol- 
lowing equation : 

(lb-r”)/(r, -r,,) = K,,f;:‘*/Pr”’ 

K, = 4K,iK: (17) 

Consequently, the thermal resistance of the turbulent 
core in the second case becomes 

FIG. 1. Comparison of several equations for heat transfer to 
annuli, Pr = 0.74, ro/r, = 0.457: A, Foust and Christian; 
B, Davis ; C, Wiegand ; D, Monrad and Pelton ; E. equa- 

tion (15). 
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FIG. 2. Comparison of several equations for heat transfer to 
annuli, Re = 10000, r,Jr, = 0.457 : A, Foust and Christian; 
B, Davis; C, Wiegand; D, Monrad and Pelton; E, equa- 

tion (15). 

and consequently, the heat transfer coefficient h can 
be calculated from equation (15). 

In Fig. I, the plots are the author’s data for air flow 
(Pr = 0.74) in an annulus (ro/rl = 0.457) for various 
Reynolds numbers. Equation (15) correlates the data 
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FIG. 3. Comparison of equations, Re = 10000, Pr = 7 : 

A, Monrad and Pelton; B, equation (15). 

fairly well and for comparison, several equations 
(Monrad and Pelton [l], Foust and Christian [6], 
Davis [7j, and Wiegand [8]) are shown, all of which 
give too high values. 

In Fig. 2, equation (15) and Monrad and Pelton’s 
equation 

Nu = 0.020(r,/r,,)0.53 Re’.’ Pr’/3 (18) 

are compared at the same radius ratio ro/r, = 0.457, 
and Reynolds number Re = 10000, only the Prandtl 
number being a variable ; they are in close agreement 
for Pr > 5. It should be noted that the effect of N 
becomes smaller with an increase of Pr. The sat- 
isfactory agreement of the two equations can be seen 
by comparing them when Pr = 7 and Re = 10 000, 
and ro/rl is a variable as in Fig. 3. 
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ANALOGIE ENTRE FRO’I-IEMENT DU FLUIDE ET TRANSFERT DE CHALEUR 
DANS LES ESPACES ANNIJLAIRES 

R&mm~IJne equation semi-thborique pour le coefficient de transfert thermique a la paroi interne est 
obtenue pour un ecoulement turbulent, a partir de l’analogie entre frottement et transfert de chaleur. La 
comparaison entre le calcul et les don&es experimentales pour un Bcoulement d’air, obtenues par l’auteur, 
montre un bon accord. 11 y a aussi une concordance avec l’equation propos&e par Monrad et Pelton pour 

les nombres de Prandtl Bleves. 

ANALOGIE ZWISCHEN REIBUNG UND WARMEUBERGANG BE1 DER STROMUNG 
EINES FLUIDES IN EINEM RINGSPALT 

Zusammenfaasung-Aus der Analogie zwischen Reibung und Wlrmetibergang la& sich eine halb-theo- 
ret&he Gleichung ableiten, mit der der Warmetibergangskoethzient an der inneren Wand eines turbulent 
durchstrijmten Ringspalts berechnet werden kann. Ein Vergleich der berechneten mit eigenen gemessenen 
Werten fiir Luft zeigt eine gute Ubereinstimmung. Die ermittelte Gleichung zeigt ebenfalls gute Uber- 
einstimmung mit den Werten, die nach der Gleichung von Monrad und Pelton bei hoheren Prandtl-Zahlen 

ermittelt wurden. 

AHAJIOI-HJI MEmJIY I-H~JHIHAMHYECKWM TPEHHEM H TEl-IJIOI-IEPEHOCOM B 
KOJIbHEBbIX KAHAJIAX 

Amnnms-I43 ariarrormi Mexcay rrmponrinahrmieerrf~ rperirieM H remroneperioeoh9 nony=teno ypaeee- 
HEIe aRI KO3+#UiLlHeHTa T64lJlOIIe~HOG3 Ha BHyTpeHHefi CTeHKC Typ6yJlCHTHOrO KOJIbMBOTO KNKUIa. 
CpBHeHEie LIzUiHblX, HdJWWblX II0 YpaBHeHHIO, C IIOJQ’WHHbIMH aBTOpM 3KClICp&iMCHT~bHblMH pe3)‘- 
IIbTaTaMH JIJIS B03ilyU~iOI’O llOTOKi3 U0K636~10 XOPOIUW COBlIaLIeHHe. Y~BHWIEe XOpOUIO COrJIaCyWCn 
Tamxe c ypasHeHHehi, npe&aoxcetinb&r MOH~JJOM H &JITOHOM mn done-e nbtcoxoro qricxa ~I~~~TJIx. 


